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This study develops a two-part hidden Markov model (HMM) for analyzing
semicontinuous longitudinal data in the presence of missing covariates. The pro-
posed model manages a semicontinuous variable by splitting it into two random
variables: a binary indicator for determining the occurrence of excess zeros at
all occasions and a continuous random variable for examining its actual level.
For the continuous longitudinal response, an HMM is proposed to describe the
relationship between the observation and unobservable finite-state transition
processes. The HMM consists of two major components. The first component
is a transition model for investigating how potential covariates influence the
probabilities of transitioning from one hidden state to another. The second
component is a conditional regression model for examining the state-specific
effects of covariates on the response. A shared random effect is introduced to
each part of the model to accommodate possible unobservable heterogeneity
among observation processes and the nonignorability of missing covariates. A
Bayesian adaptive least absolute shrinkage and selection operator (lasso) pro-
cedure is developed to conduct simultaneous variable selection and estimation.
The proposed methodology is applied to a study on the Alzheimer's Disease
Neuroimaging Initiative dataset. New insights into the pathology of Alzheimer's
disease and its potential risk factors are obtained.
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1 INTRODUCTION

Hidden Markov models (HMMs) are widely used to address the serial heterogeneity in the analysis of longitudinal data.
HMMs comprise two components: a transition model for describing the dynamic transitions of hidden states and a
regression-type conditional model for examining state-specific covariate effects on the response of interest. Owing to
their superiority in simultaneously revealing the longitudinal dependency structure and dynamic heterogeneity of the
observed process, HMMs have received considerable attention in medical, behavioral, sociopsychological, and economic
research.1-6

Despite the rapid development of HMMs and their variants, nearly all existing literature has assumed that the longi-
tudinal response variable is either continuous or discrete. However, semicontinuous data, which are characterized by a
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mixture of a probability mass at zero and a right-skewed continuous distribution for values greater than zero, are com-
monly encountered in substantive research. One typical example in medical studies is a scenario with a point mass at
zero representing a subpopulation of “non-users” who do not receive medical care in a given time interval and a contin-
uous distribution representing the level of expenditures among another subpopulation of “users.” This semicontinuous
structure may also exist in a longitudinal setting, in which subjects have two subpopulations, namely, “stayers,” who have
no probability of a nonzero observation in all occasions, and “movers,” who may have a nonzero observation at one or
more time points. Toward the semicontinuous data, a two-part model is often adopted to address the preponderance of
zeros that cannot adequately be reflected in another manner. This model generally includes a logistic regression model
for characterizing the membership probability of “non-users” (or “stayers”) and a regression-type model for examining
the relationship between continuous responses and potential covariates among “users” (or “movers”). Several two-part
models for longitudinal semicontinuous data have been investigated in recent years. Olsen and Schafer7 first introduced
correlated random effects in a two-part model and applied the model to analyze longitudinal semicontinuous data.
Smith et al8 developed a marginalized two-part model that allows investigation on the effect of covariates on the overall
population mean. Nonetheless, most contemporary works, including the preceding studies, have modeled the longitu-
dinal nonzero responses by using a simple mixed-effects model rather than HMMs and thus cannot reveal the dynamic
heterogeneity of the nonzero observations.

Another important issue in the analysis of HMMs is the presence of missing data. Simply deleting missing data,
especially those that are missing not at random (MNAR), is problematic and may lead to a considerable bias in param-
eter estimation. Lee9 further demonstrated that a case-wise deletion of missing data in a mixture-type model will result
in misleading conclusions in determining the number of mixture components. A common and convenient approach of
managing missing data is to treat them as missing at random (MAR), which assumes that the probability of missingness
depends only on observed data but not on missing data.10 Goldstein et al11 used the multiple imputation approach to deal
with missing data problem in the context of multilevel models. Their approach managed missing data in the response
and covariates based on the MAR assumption. However, in a longitudinal setting, such MAR assumption is often violated
when the probability of missingness depends dynamically on subject-specific characteristics. Hence, developing sound
statistical methods to cope with MNAR data in the context of HMMs is of scientific interest and practical value. Several
existing studies have investigated HMMs with nonignorable missing data. For example, Bartolucci and Farcomeni12 devel-
oped an event-history approach to analyze mixed HMMs with informative dropout. Cai et al13 considered a hidden Markov
structural equation model with nonignorable missing responses. Nevertheless, the preceding analyses assumed that the
response variable is continuous and only the response variable is subject to missingness. Motivated by the Alzheimer's
Disease Neuroimaging Initiative (ADNI) dataset analyzed in the present study (Section 5), in which the response variable
is semicontinuous and the covariates of interest are subject to missingness, we develop a new joint modeling approach to
accommodate these multiple features.

We propose a novel two-part HMM for longitudinal semicontinuous data with nonignorable missing covariates. The
proposed model comprises three parts. First, we consider a subject-level binary indicator to determine the occurrence of
excess zeros at all occasions (“stayers”). A logistic regression model is utilized to examine the effects of potential covariates
on the membership of “stayers.” Second, for the longitudinal observations with one or more nonzero values (“movers”),
we adopt an HMM to characterize the relationship between the transition process of hidden states and the observation
process. We propose a transition model to investigate how potential covariates influence the transition probabilities from
one hidden state to another and a conditional regression model to examine the state-specific effects of covariates on the
response. Third, we use a logistic regression model to formulate the mechanism of missing covariates. We introduce a
shared random effect to the binary indicator, conditional, and missing data models for jointly addressing the heterogene-
ity caused by the existence of omitted covariates that simultaneously affect these three parts of interest. The introduction
of such random effect also accounts for the nonignorability of missingness. We develop a full Bayesian approach coupled
with the adaptive least absolute shrinkage and selection operator method (lasso) and an efficient Markov chain Monte
Carlo (MCMC) algorithm to perform variable selection and parameter estimation. A modified deviance information cri-
terion (DIC) is used to determine the number of hidden states and an appropriate missing mechanism for the proposed
model. DeSantis et al14 considered a similar two-part HMM for zero-inflated Poisson counts. However, the excessive zeros
in their model were assumed as count data arisen from the binary part of the model and a Poisson distribution. Their
model framework neither accommodated semicontinuous data nor managed nonignorable missingness. To our knowl-
edge, the present study is the first to propose a two-part HMM for jointly analyzing longitudinal semicontinuous data
with nonignorable missing covariates.
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Our proposed method is motivated by a real study on the ADNI dataset, which recruited subjects aging from 55 to 90
years old and collected a set of characteristics of the clinical spectrum of Alzheimer's disease (AD) over time. Functional
Assessment Questionnaire (FAQ), a widely used test with a score from 0 to 30 (high scores reflect poor cognitive ability),
is utilized in the ADNI study to monitor the cognitive impairment of patients. The longitudinal FAQ scores of majority
of the participants exhibit a steadily increasing trend, which is in line with the AD pathology that often evolves a neu-
rodegenerative progression from cognitive normal (CN) to mild cognitive impairment (MCI) or even to AD. However,
approximately 30% of participants obtained zero FAQ scores over all the time points, suggesting that their cognitive func-
tions remain unimpaired during the entire study period. Such special pattern is called normal aging process by cognitive
studies.15 Distinguishing AD from normal aging has been a recurring nosologic and diagnostic problem to enhance AD
prognosis and early treatment.16 In addition, some covariates, such as hippocampal volumes of participants, have consid-
erable amount of missing entries in the ADNI dataset. Appendix S1 shows that subjects in the “missing group” generally
hold smaller hippocampal volumes than those in the “observed group”, which implies that the missingness of the hip-
pocampal volume is not at random. Simply deleting subjects with missing covariates or naively treating them as MAR is
problematic. This study aims (i) to differentiate normal aging from AD progression and examine the potential factors that
affect the membership of these two different processes, (ii) to identify the hidden states that correspond to the diagnosed
stages of cognitive decline and investigate the possibly variant effects of biomarkers on the cognitive impairment across
states, (iii) to detect the factors that contribute to the neurodegenerative pathology from one state to another, and (iv) to
propose an appropriate mechanism for modeling missing covariates. Although many existing studies have considered the
relationship between various biomarkers and cognitive impairment across the AD progression,17,18 they have regarded
the normal aging process as a part of continuum in AD progression, thereby blurring the different features of the two pro-
cesses. Moreover, they have disregarded the possibly informative missingness in covariates and thus may produce biased
results. The proposed modeling approach enables us to investigate all the aforementioned features jointly and provides
new insights into the precision medicine in AD treatment.

The remainder of the article is organized as follows. Section 2 defines the two-part HMMs with nonignorable missing
covariates and discusses the associated model identifiability issue. Section 3 presents a Bayesian approach for the analysis
of the proposed model. An adaptive lasso procedure in conjunction with a hybrid MCMC algorithm, which combines the
Gibbs sampler, Metropolis-Hastings (MH) algorithm, and the forward filtering and backward sampling (FFBS) algorithm,
is developed for simultaneous variable selection and estimation. Moreover, a modified DIC is used to determine the num-
ber of hidden states and an appropriate missing mechanism. Section 4 investigates the empirical performance of the
Bayesian estimation and model selection through several simulation studies. Section 5 applies the proposed methodology
to the aforementioned ADNI study. Section 6 concludes the paper. The technical details are provided in Appendix S1.

2 TWO-PART HIDDEN MARKOV MODEL

For subject i = 1,… ,n at t = 1,… ,T, let yit ≥ 0 be a semicontinuous response variable. We introduce a binary indicator
variable Vi to accommodate the excess zeros in yit as follows: Vi = 1 if yit = 0 for ∀t and 0 otherwise. Then, the probability
of Vi = 1 is modeled as follows:

logit{p(Vi = 1)} = 𝜷Tci + wi, (1)

where ci = (1, ci1,… , cir)T is an (r + 1) × 1 vector of baseline covariates, 𝜷 = (𝛽0,… , 𝛽r)T is an (r + 1) × 1 vector of
unknown coefficient, and wi is a subject-specific random effect following a normal distribution N(0, 𝜎2).

For subjects with Vi = 0, the longitudinal responses yit, t = 1,… ,T are modeled through an HMM. The hidden state
process, Zit, is assumed to follow a first-order Markov chain and takes values in a finite set {1,… , S}. Given Vi = 0 and
hidden state Zit = s, a conditional regression model for the continuous response is defined as follows:

[yit|Vi = 0,Zit = s] = 𝜇s + 𝜸T
s xit + wi + 𝜖it, (2)

where 𝜇s is a state-specific intercept, 𝜸s = (𝛾s1,… , 𝛾sp)T is a p × 1 state-specific coefficient, xit = (xit1,… , xitp)T is a p × 1
vector of covariates, wi is the subject-specific random effect that is also incorporated in (1), 𝜖it is a random residual term
independent of yit, and [𝜖it|Vi = 0,Zit = s] ∼ N (0, 𝜓s).
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Let pitus denote the transition probability from state Zit = u at time t − 1 to state Zit = s at time t for subject
i. On the basis of the assumption of the first-order Markov chain, we have pitus = P (Zit = s|Zi1,Zi2,… ,Zit−1 = u) =
P (Zit = s|Zit−1 = u). In substantive research, hidden states often have natural ranking information. Thus, we assume that
hidden states {1,… , S} are ordered and 𝜗itus = P(Zit = s|Zit ≥ s,Zit−1 = u). A continuation-ratio logit model is considered
as follows:

log
(

P (Zit = s|Zit−1 = u)
P (Zit > s|Zit−1 = u)

)
= log

(
pitus

pitu,s+1 + · · · + pituS

)
= logit(𝜗itus) = 𝜁us + 𝜶Txit, (3)

where the left-hand side is the log odds of transition to state s rather than to a state that is higher than s given that Zit−1 = u,
𝜁us is a transition-specific intercept, xit = (xit1,… , xitp)T is the covariate vector defined in (2), and 𝜶 = (𝛼1,… , 𝛼p)T is a
p × 1 vector of unknown parameters. Similar to the proportional odds assumption in a cumulative logit model, 𝜶 in (3) is
assumed to be independent of u and s to maintain the order of the hidden states and obtain a parsimonious model. The
initial probability of the hidden state at occasion t = 1 for subject i is defined as follows: For s = 1,… , S − 1, log

(
P(Zi1=s)
P(Zi1>s)

)
=

log
(

pi10s
pi10,s+1+…+pi10,S

)
= 𝜏s.

Managing missingness in covariates xit and ci is another important issue. In this study, we focus on missingness
in the time-variant covariate xit because the baseline covariate ci is usually fully observed in most substantive studies.
Yet the extension to consider missingness of both xit and ci is trivial in the proposed framework. Let ritk be the missing
indicator for xitk, such that ritk = 1 if xitk is missing and 0 otherwise. Denote rit = (rit1,… , ritp)T , Ri = {rit; t = 1,… ,T},
and R = {Ri; i = 1,… ,n}, and partition X into {Xo,Xm}, where Xo and Xm are the observed and missing data sets of X,
respectively. Given that MAR assumption is not always a guarantee in reality, we consider a shared random effect model
to accommodate the possible nonignorability of missing covariates in this study. Conditional on state s, ritk is assumed to
follow independent Bernoulli distribution, and for t = 2,… ,T,

logit{p(ritk = 1|Zit = s,wi, fit,𝝋sk)} = 𝝋T
skfit + wi, (4)

where fit = (1, fit1,… , fitl)T is the (l + 1) × 1 vector of covariates, and 𝝋sk = (𝜑sk0,… , 𝜑skl)T is a (l + 1) × 1 state-specific
regression parameter. The elements in fit are usually chosen from the available covariates that may affect the missing
probability of xitk. The inclusion of response yit and missing covariates in fit is allowed but unnecessary because we include
a shared random effect wi into the conditional regression and missing data models to account for the nonignorability
of missingness. Nevertheless, a model comparison procedure is required to assess the sensitivity of Bayesian results to
misspecification of the missing data mechanism because the true missing mechanism is unknown. Notably, the covariates
ci, xit, and fit can have overlapping elements.

On the basis of the two-part HMMs defined by (1)-(4), several heterogeneities that are worthy of investigation in
longitudinal semicontinuous data are well addressed. First, the binary indicator model defined by (1) examines the het-
erogeneity characterized by excess zeros over all occasions and continuous longitudinal responses. Second, the HMM
defined by (2)-(3) describes the dynamic heterogeneity of the longitudinal observations across various hidden states.
Finally, the random effect shared by (1), (2), and (4) accounts for the heterogeneity caused by the omitted covariates that
simultaneously affect the binary indicator, longitudinal response, and missing probability. Although distinct but corre-
lated random effects can be considered in (1), (2), and (4), introducing the same random effect into different models can
avoid additional nuisance parameters and obtain a parsimonious joint model.

The proposed model is not identifiable without imposing identifiability constraints on model parameters. The model
indeterminacy stems from the label switching problem caused by the likelihood function of an HMM being invariant to
a random permutation of the state labels. Therefore, the resulting posterior distribution becomes multimodal under the
symmetric priors of the parameters in different states. Basically, any constraint that defines the ranking of the state-specific
parameter is sufficient to address the label switching problem. Among the literature, imposing an ordering restriction
on component means is an efficient method for preventing label switching and ensuring model identifiability.19-21 In
the ADNI study, previous medical reports about AD indicated that patient's cognitive impairment steadily increases
from mild to severe stage. Thus, we choose the state-specific mean and impose the constraint 𝜇1 < … < 𝜇S in posterior
sampling.
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3 BAYESIAN INFERENCE

Let 𝜽 be the vector that contains all the unknown parameters; yi = (yi1,… , yiT)T , Y = {yi; i = 1,… ,n}, Fi = {fit; t =
1,… ,T}, F = {Fi; i = 1,… ,n}, C = {ci; i = 1,… ,n}, Z = {Zi; i = 1,… ,n}, w = (w1,… ,wn)T , and Ho = {Y,Xo,F,C,R}.
On the basis of proposed model defined in (1)-(4), the adaptive lasso estimator can be formulated as

arg min𝜃

{
−

n∑
i=1

log(p(Vi)) +
ns∑

i=1

T∑
t=1

[
(yit − 𝜂it)2 −

p∑
k=1

log p(ritk)

]
−

ns∑
i=1

T∑
t=2

log(pitus) − P(𝜃)

}
,

where p(Vi) is the probability of excess zeros defined in (1), 𝜂it is the mean of yit, p(ritk) is the probability of miss-
ingness defined in (4), pitus is the transition probability defined in (3), and P(𝜃) =

∑r
j=1 𝜆𝛽j|𝛽j| +∑S

s=1
∑p

k=1 𝜆𝛾sk|𝛾sk| +∑p
k=1 𝜆𝛼k|𝛼k| +∑S

s=1
∑p

k=1
∑l

h=1 𝜆𝜑skh|𝜑skh|, in which 𝛽j, 𝛾sk, 𝛼k, and 𝜑skh are the coefficients of fixed effects, and
𝜆𝛽j, 𝜆𝛾sk, 𝜆𝛼k, and 𝜆𝜑skh are the corresponding tuning parameters.

Under the Bayesian framework, the adaptive lasso procedure can be implemented by introducing a multivariate
conditional Laplace prior to the regression coefficient in 𝜽* = (𝜷, 𝜸,𝜶,𝝋) as follows:

p(𝜽∗|𝝍 ,𝝈2) ∝ exp
⎧⎪⎨⎪⎩−

r∑
j=1

𝜆𝛽j√
𝜎2
𝛽

|𝛽j| − p∑
k=1

⎛⎜⎜⎜⎝
𝜆𝛾sk√
𝜓s

|𝛾sk| − 𝜆𝛼k√
𝜎2
𝛼

|𝛼k| − l∑
h=1

𝜆𝜑skh√
𝜎2
𝜑sk

|𝜑skh|⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭ , (5)

where𝝍 = (𝜓1,… , 𝜓S) and𝝈2 = (𝜎2
𝛽
, 𝜎2

𝛼, 𝜎
2
𝜑1,… , 𝜎2

𝜑S). This conditional Laplace prior can be represented as a scale mixture
of normals with an exponential mixing density, leading to a hierarchical representation of the full model as follows: for
i = 1,… ,ns, t = 1,… ,T, s = 1,… , S, j = 1,… , r, k = 1,… , p, and h = 1,… , l, we have

yit|Zit = s, 𝜇s, 𝜸s,wi, 𝜓s, xit ∼ N(𝜂it, 𝜓s)

𝜸s|𝜓s, 𝜏
2
𝛾s1,… , 𝜏2

𝛾sp
ind∼ Np

(
0, 𝜓s𝚺𝛾s

)
, 𝚺𝛾s = diag

(
𝜏2
𝛾s1,… , 𝜏2

𝛾sp
)

𝜷|𝜎2
𝛽
, 𝜏2

𝛽1,… , 𝜏2
𝛽r

ind∼ Np

(
0, 𝜎2

𝛽
𝚺𝛽

)
, 𝚺𝛽 = diag

(
𝜏2
𝛽1,… , 𝜏2

𝛽r

)
𝜶|𝜎2

𝛼, 𝜏
2
𝛼1,… , 𝜏2

𝛼p
ind∼ Np

(
0, 𝜎2

𝛼𝚺𝛼

)
, 𝚺𝛼 = diag

(
𝜏2
𝛼1,… , 𝜏2

𝛼p
)

𝝋sk|𝜎2
𝜑sk, 𝜏

2
𝜑sk1,… , 𝜏2

𝜑sklk

ind∼ Np

(
0, 𝜎2

𝜑sk𝚺𝜑sk

)
, 𝚺𝜑sk = diag

(
𝜏2
𝜑sk1,… , 𝜏2

𝜑skl

)
, (6)

where ind∼ represents “independently distributed according to.” For the tuning parameters𝜆𝛽j, 𝜆𝛾sk, 𝜆𝛼k, and 𝜆𝜑skh, we assign
gamma priors as follows:

p(𝜆𝛽j)
ind∼ Gamma(𝛼𝛽j0, 𝛽𝛽j0), p(𝜆𝛾sk)

ind∼ Gamma(𝛼𝛾sk0, 𝛽𝛾sk0),

p(𝜆𝛼k)
ind∼ Gamma(𝛼𝛼k0, 𝛽𝛼k0), p(𝜆𝜑skh)

ind∼ Gamma(𝛼𝜑skh0, 𝛽𝜑skh0). (7)

The prior distributions for the other unknown parameters of 𝜽 are specified as follows:

p(𝜇s)
ind∼ N(𝜇s0, 𝜎

2
𝜇s0), p(𝜁us)

ind∼ N(𝜁us0, 𝜎
2
𝜁us0), p(𝜏s)

ind∼ N(𝜏s0, 𝜎
2
𝜏s0), (8)

where 𝛼𝛽j0, 𝛼𝛾sk0, 𝛼𝛼k0, 𝛼𝜑skh0, 𝛽𝛽j0, 𝛽𝛾sk0, 𝛽𝛼k0, 𝛽𝜑skh0, 𝜇s0, 𝜁us0, 𝜏s0, 𝜎
2
𝜇s0, 𝜎

2
𝜁us0, and 𝜎2

𝜏s0 are hyperparameters with preassigned
values. Notably, Bayesian lasso does not shrink coefficients corresponding to unimportant predictors exactly to 0. We
follow the existing literature22-24 to determine the importance of predictors. If the absolute value of a coefficient is less
than or equal to 0.1, we conclude the corresponding predictor is unimportant and should be removed from the model.

The Bayesian estimate of 𝜽 can be obtained through the mean of the posterior samples drawn from p(𝜽|Ho). How-
ever, this posterior distribution involves high-dimensional integral with respect to latent quantities, such as hidden states,
random effects, and missing data. Thus, directly sampling from p(𝜽|Ho) is intractable. We use the idea of data aug-
mentation to augment the observed data Ho with the latent quantities Hm = {Z,w,Xm}. The Gibbs sampler is used to
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sample from p(𝜽,Hm|Ho) iteratively by generating (i) Xm from P(Xm|Z,w,𝜽,Ho), (ii) Z from P(Z|Xm,w,𝜽,Ho), (iii) w
from P(w|Xm,Z,𝜽,Ho), and (iv) 𝜽 from P(𝜽|Xm,w,Z,Ho). The details of the full conditional distributions involved in the
MCMC algorithm are described in Appendix S1.

For the present two-part HMMs, other relevant inference issues include (i) determination of the number of hidden
states, (ii) selection of an appropriate missing data mechanism for missing covariates, and (iii) examination of necessity
of the shared random effect. We propose to use DIC to perform model selection. Given that the conventional DIC is
inapplicable in the presence of missing data,25 we adopt a modified DIC26 to determine the number of hidden states,
select a plausible missing mechanism, and examine the necessity of the random effect. The computation of the modified
DIC is presented in Appendix S1.

4 SIMULATION STUDY

4.1 Simulation 1

We generate datasets from a two-part HMM defined by (1)-(4) with two states (S = 2). In conditional and transition
models (2) and (3), we consider four time-variant covariates, xit = (xit1, xit2, xit3, xit4)T , in which xit1, xit2, xit3, and xit4 are
independently generated from Bernoulli(0.5), U(−1, 1) , N(

√
t − 1, 1), and N(mx, 𝜎

2
x ), respectively. In model (1), we set

time-invariant covariate ci to be the baseline covariate of xit, that is, ci = xi1. The shared random effect wi is generated
from N(0, 𝜎2). For subjects with Vi = 1, yit is set to 0 for t = 1,… ,T. We generate yit for subjects with Vi = 0 based on a
two-state HMM. The proposed joint model is defined as follows:

logit {p(Vi = 1)} = 𝛽0 + 𝛽1xi11 + 𝛽2xi12 + 𝛽3xi13 + 𝛽4xi14 + wi, (9)

logit(𝜗itus) = 𝜁us + 𝛼1xit1 + 𝛼2xit2 + 𝛼3xit3 + 𝛼4xit4, (10)

[yit|Vi = 0,Zit = s] = 𝜇s + 𝛾s1xit1 + 𝛾s2xit2 + 𝛾s3xit3 + 𝛾s4xit4 + wi + 𝜖it, (11)

where [𝜖it|Zit = s] ∼ N(0, 𝜓s). Moreover, we assume that covariate xit4 is subject to nonignorable missingness for t =
2,… ,T and generate the missing indicator rit4 conditional on fit = (xit1, xit2, xit3)T based on a logistic regression model as
follows:

logit{p(rit4 = 1|Zit = s,wi, fit,𝝋s)} = 𝜑s0 + 𝜑s1xit1 + 𝜑s2xit2 + 𝜑s3xit3 + wi. (12)

The true population values of the unknown parameters are set as mx = 0, 𝜎2
x = 1, 𝜷 = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4)T =

(−1, 0, 1, 0, 0)T , 𝜎2 = 1, 𝝍 = (𝜓1, 𝜓2)T = (0.25, 0.25), 𝜏1 = 0, 𝜁11 = −1, 𝜁21 = 1, 𝜶 = (𝛼1, 𝛼2, 𝛼3, 𝛼4)T = (2, 0,−1, 0)T ,
𝜸1 = (𝛾11, 𝛾21)T = (0, 1)T , 𝜸2 = (𝛾12, 𝛾22)T = (−2, 0)T , 𝜸3 = (𝛾13, 𝛾23)T = (−2, 1)T , 𝜸4 = (𝛾14, 𝛾24)T = (−2, 1)T , 𝝁 = (𝜇1, 𝜇2)T =
(−2, 1)T , 𝝋0 = (𝜑10, 𝜑20)T = (−1.5, 2)T , 𝝋1 = (𝜑11, 𝜑21)T = (0, 0)T , 𝝋2 = (𝜑12, 𝜑22)T = (2, 0)T , and 𝝋3 = (𝜑13, 𝜑23)T =
(0,−2)T .

On the basis of the abovementioned setting, we generate n = 1000 observations with T = 6, of which approximately
25% of subjects are coded as Vi = 1 with observation yit = 0 at each occasion, whereas the rest of the subjects are coded
as Vi = 0 with longitudinal observations yit generated from the specified HMM. Among the observations of subjects with
Vi = 0, 45% and 55% of them come from the first and second states, respectively. The missing proportion is approximately
25% in each state, which mimics the scenario of the ADNI study.

In the simulation study, the prior inputs in (7)-(8) are assigned as follows (Prior I): 𝜇s0 = 𝜏s0 = 𝜁us0 = 0 and 𝜎2
𝜇s0 =

𝜎2
𝜏s0 = 𝜎2

𝜁us0 = 4, and we follow a common practice24 in the literature to set 𝛼𝛽j0 = 𝛼𝛾sk0 = 𝛼𝛼k0 = 𝛼𝜑skh0 = 1, 𝛽𝛽j0 = 𝛽𝛾sk0 =
𝛽𝛼k0 = 𝛽𝜑skh0 = 0.1. We conduct a few test runs to decide the number of burn-in iterations at convergence and find that
1000 burn-in iterations are sufficient. Therefore, we collect 5000 simulated observations after 1,000 burn-in iterations to
obtain the Bayesian estimates of model parameters.

Table 1 presents the results summarized based on 100 replications. The bias, root mean square error (RMSE) between
the Bayesian estimates and true population values of the parameters, and the ratio of standard error (SE)/standard devi-
ation (SD) are used to assess the performance of Bayesian estimation. The bias and RMSE for most of the parameters are
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close to zero, and the SE/SD ratios are basically close to one, indicating a satisfactory performance of Bayesian estimation.
Moreover, the hidden states can be estimated through the posterior samples as follows:

Ẑit = arg max
s∈{1,…,S}

P(Zit = s|yi,𝜽) ≈ arg max
s∈{1,…,S}

1
J

J∑
j=1

I
(

Z(j)
it = s

)
, (13)

where Z(j)
it denotes the hidden state of yit at the jth iteration, and arg max

s∈{1,…,S}
1
J

∑J
j=1 I

(
Z(j)

it = s
)

is the posterior mean of

the hidden state of yit drawn from the MCMC iterations. In this simulation, the correct classification rate calculated using
(13) is over 94% in each replication, and the average accuracy based on 100 datasets is 94.68%, thereby indicating that the
proposed model can correctly identify the hidden states of observations.

To assess the sensitivity of Bayesian estimation to prior inputs, we disturb the hyperparameters as follows (Prior
II): 𝜇s0 = 𝜏s0 = 𝜁us0 = 0, 𝜎2

𝜇s0 = 𝜎2
𝜏s0 = 𝜎2

𝜁us0 = 100. Table 1 presents the Bayesian results obtained under Prior II for
comparison. The results under the two prior inputs are similar.

We also reanalyze the simulated 100 datasets by using a naive model MC, which performs case-wise deletion and
only uses available data with complete covariates to fit the model. The results are presented in Appendix S1, along with
the results of M2 for comparison. Most of the estimates, especially those involved in the transition model, show signifi-
cantly larger biases for MC than for M2. Therefore, ignoring the missing data problem and adopting the case-wise deletion
procedure leads to serious information loss and produces biased estimation.

4.2 Simulation 2

To investigate the necessity of the shared random effect in the proposed model, we consider another competing model,
MS1 , which excludes the random effect in the binary indicator, conditional, and missing data models. Appendix S1 reports
the estimates of the unknown parameters under MS1 based on the 100 datasets generated in Simulation 1. Compared with
the results under the true model M2, nearly all Bayesian estimates obtained from MS1 show considerably larger Bias and
RMSE. Moreover, the average accuracy of state identification under MS1 is 91.18%, which is lower than that under the
true model.

To check the performance of the proposed method in a homogenous scenario, we generate datasets with the same
setting as in Simulation 1 but without the random effect wi. We consider two competing models, namely, MS2 and MS3 ,
which represent the two-part HMMs defined by (1)-(4) with and without the shared random effect, respectively. Appendix
S1 presents the Bayesian estimates of unknown parameters obtained from MS2 and MS3 based on 100 replications. Majority
of the estimates are close to the population true values under both models. The correct classifications of Zit based on MS2

and MS3 are 95.22% and 95.35%.

4.3 Simulation 3

To examine the performance of the modified DIC in model selection, we re-analyze the 100 datasets generated in
Simulation 1 by using the following seven competing models:

(1) Determination of the number of hidden states S:
MS: S = 1,… , 4, missing covariates are treated as MNAR.

(2) Selection of missing mechanisms:
M5: S = 2, the missing mechanism (12) is wrongly specified as MAR as follows: logit{p(rit4 = 1|Zit = s, fit =

(xit1, xit2, xit3)T ,𝝋s)} = 𝜑s0 + 𝜑s1xit1 + 𝜑s2xit2 + 𝜑s3xit3.
M6: S = 2, the missing mechanism (12) is wrongly specified as logit{p(rit4 = 1|Zit = s,wi, fit =

(xit1, xit2, xit3)T ,𝝋s)} = 𝜑0 + 𝜑1xit1 + 𝜑2xit2 + 𝜑3xit3 + wi, where 𝜑0, 𝜑1, 𝜑2, and 𝜑3 are set as state-invariant.
(3) Examination of necessity of the shared random effect:

MS1: S = 2, the random effect in models (1), (2), and (4) are omitted.
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Among these competing models, M2 is the true model; M1,M3, and M4 are models with an incorrect number of
hidden states; and M5, M6, and MS1 are the same as M2, except that M5 assumes a MAR mechanism; M6 assigns
state-invariant-coefficient missing data model, and MS1 overlooks the linkage across the three models. Our main goal is
to evaluate the performance of the modified DIC in identifying the true number of hidden states, selecting an appropriate
missingness mechanism, and examining the necessity of the random effect. The boxplots of DIC values under all compet-
ing models are reported in Appendix S1. The true model M2 is consistently selected with the smallest DIC value in each
of the 100 replications.

The code for implementing the simulation study is written in Python and can be freely downloaded at
https://orcid.org/0000-0002-4877-3200.

5 ADNI DATA ANALYSIS

We applied the proposed method to analyze a dataset extracted from the ADNI study. The initial goal of ADNI was to
recruit 800 participants aging between 55 and 90 years old, including 200 subjects for elderly control, 400 subjects with
MCI, and 200 subjects with early AD. After obtaining informed consent, participants underwent a series of tests, and their
neuroimaging, genetic, and biochemical markers as well as clinical and cognitive data were collected over time. Addi-
tional information about ADNI can be found in the official website (www.adni-info.org). FAQ, a cognitive measurement
collected in ADNI, is a functional and behavioral assessment with 10 items corresponding to function independently in
daily life and is widely used to measure cognitive impairment over time. FAQ score ranges from 0 to 30, with high scores
indicating poor cognitive ability. In the ADNI study, the longitudinal FAQ scores of most participants exhibit a gradually
increasing trend, indicating a disease progression from CN to MCI or further to AD.27 However, approximately 30% of
subjects have unchanged zero FAQ score in each follow-up visit. Such a pattern of longitudinal cognitive ability, in which
the cognitive function remains unimpaired over the life span, is often referred to as normal aging by cognitive studies.15

Previous neuropathologic studies28 found specific neuronal loss in the entorhinal cortex in patients with very mild AD
but no change in the same region for a cognitively intact elderly. These observations imply that the CN–MCI–AD pro-
gression and normal aging process are dichotomous and that normal aging should be treated separately rather than be
regarded as the earliest stage of AD progression.

Given the presence of longitudinal semicontinuous response FAQ and the existence of hidden pathophysiological
states in AD pathology, the two-part HMMs defined in (1)-(4) is proposed to fit the ADNI dataset. This ADNI data analysis
aims (i) to investigate the potential covariates that influence the probability of a subject belonging to the normal aging
group, (ii) to identify the hidden states of the neurodegenerative pathology on the basis of subjects who are in an AD
progression, (iii) to examine a set of covariates that affect the between-state transition, and (iv) to reveal the effects of
potential risk factors on cognitive impairment across the hidden states of the AD progression.

We focused on 651 subjects from ADNI-1 study and collected their FAQ score (yit) at baseline, 6 months, 12 months,
24 months, and 36 months. Among the subjects, 182 had zero FAQ scores in all five visits, whereas 469 had at least one
nonzero FAQ score during the five follow-up visits. We used Vi = 1 to denote these 182 subjects with normal aging pat-
tern and used Vi = 0 for the other 469 subjects in the AD progression. The apolipoprotein E-𝜖4 (APOE-𝜖4), a well-known
risk factor for progression from MCI to AD,29 was coded using two dummy variables: “one-APOE-𝜖4-allele carrier (xit1)”
and “two-APOE-𝜖4-allele carrier (xit2)” in the current study. Two discrete demographic characteristics, gender (xit3, 1 =
female) and marital status (xit4, 1 = has never married) were also included. Moreover, three continuous covariates, namely,
years of education (xit5), age (xit6), and the logarithm of the ratio of hippocampal volume over whole brain (xit7), were
considered. These seven covariates were incorporated into the conditional model (2) and transition model (3) for investi-
gating their associations with FAQ and the transition pattern of AD. The baseline covariates, namely, ci = (xi11,… , xi17)T ,
were included in the binary indicator model (1) to explore their potential effects on the classification of normal aging
or AD progression. In this study, the covariate “hippocampal volume (xit7)” contains approximately 25% missing entries
in the follow-up study. Given that the hippocampus plays an important role in consolidating information from short- to
long-term memory and that subjects with lower hippocampal volume are more likely to have missingness in the following
visits (see Appendix S1), simply treating the missing entries of “hippocampal volume” as MAR was certainly inappropri-
ate. Thus, we considered model (4) with covariates fit = (xit1,… , xit6)T to accommodate the nonignorable missingness of
“hippocampal volume.”
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T A B L E 2 DIC values in the analysis of the ADNI dataset Models MNs MIs MWs

S = 1 13,990 13,904 16,828

S = 2 11,373 11,492 14,343

S = 3 11,130 11,248 14,071

S = 4 11,343 11,434 14,233

S = 5 11,955 12,010 14,552

Abbreviations: ADNI, Alzheimer's Disease Neuroimaging
Initiative; DIC, deviance information criterion.

We started with determining the number of hidden states, selecting an appropriate missing mechanism, and exam-
ining the necessity of the shared random effect by using the modified DIC. We considered the following competing
models:

MNs: an s-state HMM defined by (1)-(4) with a nonignorable missing mechanism.
MIs: an s-state HMM defined by (1)-(4) with the random effect being excluded in (4).
MWs: an s-state HMM defined by (1)-(4) with the shared random effect being excluded in all the submodels.
The above three settings were considered under five different numbers of states, s = 1, 2, 3, 4, 5, leading to 15 compet-

ing models. The identifiability constraint 𝜇1 < … < 𝜇S was used to avoid label switching. We generated several MCMC
chains from different initial values to check the convergence of the MCMC algorithm. The trace plot (not reported)
indicated that the MCMC algorithm converged within 5000 iterations. Thus, we collected 5000 MCMC samples after dis-
carding 5000 burn-in iterations to calculate the modified DIC value of each competing model. Based on the results in
Table 2, MN3, the three-state HMM with nonignorable missing mechanism, has the smallest DIC value and was therefore
chosen for the subsequent analysis. Table 3 shows the Bayesian estimates (Est), standard error estimates (SE), and the
95% credible interval (CI) of all unknown parameters in MN3. For each parameter, the 95% CI is constructed by using the
2.5% and 97.5% percentiles of its posterior samples collected from the MCMC iterations. A covariate effect is significant
if its estimate exceeds twice of the standard error estimate or the corresponding 95% CI does not include zero.

We have the following observations. In model (1), APOE-𝜖4 allele, hippocampal volume, and gender have significant
effects on the probability of classification between normal aging and AD-progression. Patients with APOE-𝜖4 alelles have
significant negative effect [𝛽1 = −0.390(0.188), 𝛽2 = −0.610(0.301)] on being classified to normal aging group. This find-
ing agrees with the published medical report30 and implies that the mutation in APOE-𝜖4 is an important risk factor for
AD development. By contrast, hippocampal volume shows significant positive effect [𝛽7 = 0.524(0.062)] on the proba-
bility of experiencing normal aging, which is also verified by other medical researches.31 Female [𝛽3 = 0.491(0.182)] are
more likely to be classified into normal aging group. The strong association between these baseline covariates and the
membership probability of normal aging provides a possible way for doctors to distinguish AD-progression from normal
aging in an early period, which therefore reduces the medical cost and enhances the targeted treatment.

In conditional model (2), �̂�1 = −0.491(0.030), �̂�2 = 0.320(0.082), and �̂�3 = 1.883(0.109) are ranked in an ascending
order, indicating that the subjects in state 1 have the lowest FAQ scores, whereas the subjects in state 3 have the highest.
Hence, the subjects' cognitive impairment become steadily severer from state 1 to state 3. Existing literature32 has indi-
cated that states 1 to 3 can be explained as CN, MCI, and AD, which describe the three major neurodegenerative stages in
AD progression. The APOE-𝜖4 alleles [�̂�11 = 0.089(0.039), �̂�12 = 0.204(0.065), �̂�21 = 0.210(0.089), �̂�22 = 0.529(0.145)] have
positive effects on FAQ in CN and MCI states and the effect of two APOE-𝜖4 alleles is even larger than that of one
APOE-𝜖4 allele. Such detrimental role of APOE-𝜖4 alleles played in the cognitive decline has also been confirmed by
other studies.33 On the contrary, the hippocampal volume is negatively associated with FAQ in CN and MCI state
[�̂�17 = −0.024(0.012), �̂�27 = −0.117(0.054)], implying that atrophy of hippocampus increasingly impairs patients' cogni-
tive ability on the progression from CN to MCI.34 However, in the AD state, all the indicators become insignificant except
that two APOE-𝜖4 alleles still have positive effects [�̂�32 = 0.306(0.162)] on FAQ. Such salient effect demonstrates that two
APOE-𝜖4 alleles are the decisive factor for the cognitive impairment in AD state.35

In transition model (3), two-APOE-𝜖4 alleles have negative effect on the probability of transitioning from a state to
a better one [�̂�2 = −0.702(0.204)]. This result is in line with previous studies.36 By contrast, preventing the loss of hip-
pocampal volume [�̂�7 = 0.377(0.090)] is beneficial to postpone transitioning to a severer state. Such finding is supported
by the medical research, which shows that hippocampus is critically involved in the encoding, storage, and retrieval of
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long-term memories37 and that smaller hippocampus is associated with increased risk for conversion to AD state.38 Mar-
ital status and education years have insignificant effect on the transition probability when APOE allele and hippocampus
are controlled.

In missing data model (4), the effect of age on the probability of missingness in the hippocampal volume is signifi-
cantly positive in CN and MCI state [�̂�16 = 0.225(0.071), �̂�26 = 0.397(0.183)], implying that older people are likely to have
missing follow-up measurements of the hippocampal volume in the early stages of AD progression. This finding is in line
with the common sense that the elderly tends to drop out or be unresponsive in survey due to medical problems. Another
finding is that females are prone to have missing measurement of hippocampal volume in CN state [�̂�13 = 0.146(0.074)].
Moreover, the variance of the shared random effect is significant [�̂�2 = 0.116(0.011)], which reconfirms the necessity of
the nonignorable missing mechanism for “hippocampal volume” and implies that some omitted clinical or genetic indi-
cators may simultaneously influence the outcomes of the observation process, transition probabilities, the membership
of normal aging, and the missing probability of hippocampal volume.

Furthermore, we estimated the hidden states of subjects who are in AD progression on the basis of (13). Over 95%
posterior transition patterns exhibited an early state to a severe one, which agrees with the irreversibility of AD. The
total number of participants in this analysis is 651. Each participant was diagnosed as CN, MCI, or AD at five occasions.
Appendix S1 compares subjects' estimated hidden states with their diagnosed status given by doctors at all the occasions.
For CN and AD states, majority of the estimated states were consistent with those diagnosed by doctors. However, for
MCI state, 1311 (78.8%) of symptomatic stages were diagnosed as MCI by doctors but classified into CN by our proposed
method. This inconsistency may result from the vague demarcation between CN and MCI, which was also found and
discussed in existing literature.30

To investigate the sensitivity of Bayesian estimation and model selection to the prior input, the preceding ADNI
analysis was repeated with ad hoc perturbations of the current prior input. The obtained results were similar and not
reported.

6 DISCUSSION

We proposed a two-part HMM to analyze longitudinal semicontinuous data in the presence of nonignorable missing
covariates. The longitudinal semicontinuous response was represented by two random variables: a binary indicator vari-
able for determining the occurrence of excess zeros in all occasions and a continuous variable for examining its actual
value. A logistic regression model was used to link the binary indicator with potential covariates. Furthermore, we con-
sidered an HMM to analyze the longitudinal continuous responses and introduced a shared random effect to the missing
data model to address the nonignorability of missingness in covariates. We developed a hybrid algorithm to conduct
efficient statistical inference.

The proposed model assumed that covariates effects on outcomes have parametric forms. However, the relationships
between covariates and outcomes are seldom known a priori. Generalizing the existing model framework to a nonpara-
metric context for further enhancing the model flexibility and analytic power is of substantial interest. Moreover, we
simply used FAQ to represent patients' cognitive ability. A highly comprehensive measurement of cognitive ability should
incorporate other relevant assessments, such as the Alzheimer's Disease Assessment Scale and Mini-Mental State Exam-
ination. Adopting a factor analysis model to group such highly correlated but different cognitive tests into an integrated
latent variable can reduce information loss and improve model interpretability. In this case, the binary indicator variable
for excess zeros should be redefined accordingly because the observed longitudinal response variable is no longer a scalar
yit but a vector yit with several indicators. Furthermore, the proposed model involves a logit link in the binary indicator
and missing data models. The MH algorithm, which does not have the same speed as the Gibbs samplers, is currently
used to manage such a logistic likelihood. A possible future interest is to use the Pólya-Gamma augmentation to con-
duct a full Bayesian inference for the proposed model. This type of efficient sampling method possesses a high potential
for highly efficient Gibbs updates in the presence of logistic likelihoods, but requires further investigation in the context
of the current complex model framework. Finally, the binary indicator, conditional regression, and missing data models
were assumed to share the same random effect wi. This is a strong assumption for multiple outcomes. Extending the cur-
rent framework to allow different random effects in the three submodels is of great interest in the future research. We
may consider a multivariate normal distribution for these three random effects39 or adopt copula representation to for-
mulate the association structure among different random effects.40 This extension enables us to accommodate various
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sources of heterogeneity within different outcomes and simultaneously investigate their relationships, thereby enhanc-
ing model capability and flexibility. However, developing such statistical approaches raises new challenges and requires
further investigation.
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